A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity.
نویسندگان
چکیده
Norepinephrine (NE) transporters (NETs) terminate noradrenergic synaptic transmission and represent a major therapeutic target for antidepressant medications. NETs and related transporters are under intrinsic regulation by receptor and kinase-linked pathways, and clarification of these pathways may suggest candidates for the development of novel therapeutic approaches. Syntaxin 1A, a presynaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, interacts with NET and modulates NET intrinsic activity. NETs colocalize with and bind to syntaxin 1A in both native preparations and heterologous systems. Protein kinase C activation disrupts surface NET/syntaxin 1A interactions and downregulates NET activity in a syntaxin-dependent manner. Syntaxin 1A binds the NH(2) terminal domain of NET, and a deletion of this domain both eliminates NET/syntaxin 1A associations and prevents phorbol ester-triggered NET downregulation. Whereas syntaxin 1A supports the surface trafficking of NET proteins, its direct interaction with NET limits transporter catalytic function. These two contradictory roles of syntaxin 1A on NET appear to be linked and reveal a dynamic cycle of interactions that allow for the coordinated control between NE release and reuptake.
منابع مشابه
Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A.
Syntaxin 1A inhibits GABA uptake of an endogenous GABA transporter in neuronal cultures from rat hippocampus and in reconstitution systems expressing the cloned rat brain GABA transporter GAT1. Evidence of interactions between syntaxin 1A and GAT1 comes from three experimental approaches: botulinum toxin cleavage of syntaxin 1A, syntaxin 1A antisense treatments, and coimmunoprecipitation of a c...
متن کاملImpairment of catecholamine systems during induction of long-term potentiation at hippocampal CA1 synapses in HPC-1/syntaxin 1A knock-out mice.
The membrane protein HPC-1/syntaxin 1A is believed to play a key role in synaptic vesicle exocytosis, and it was recently suggested to be required for synaptic plasticity. Despite evidence for the function of HPC-1/syntaxin 1A in synaptic plasticity, the underlying cellular mechanism is unclear. We found that although fast synaptic transmission and long-term depression were unaffected, HPC-1/sy...
متن کاملThe Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter.
A small subset of neurons in the nematode Caenorhabditis elegans utilizes the catecholamine dopamine (DA) as a neurotransmitter to control or modulate movement and egg-laying. Disruption of DA-mediated behaviors represents a potentially powerful strategy to identify genes that are likely to participate in dopaminergic systems in man. In vertebrates, extracellular DA is inactivated by presynapti...
متن کاملnSec-1 (munc-18) interacts with both primed and unprimed syntaxin 1A and associates in a dimeric complex on adrenal chromaffin granules.
The target-SNARE syntaxin 1A is an essential component of the core machinery required for regulated exocytosis (where SNARE is the soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor). Syntaxin 1A interacts with a variety of other proteins, two of which, N-ethylmaleimide-sensitive fusion protein (NSF) and alpha-soluble NSF attachment protein (alpha-SNAP) have been sugg...
متن کاملThe antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines.
Extracellular concentrations of monoamine neurotransmitters are regulated by a family of high-affinity transporters that are the molecular targets for such psychoactive drugs as cocaine, amphetamines, and therapeutic antidepressants. In Drosophila melanogaster, cocaine-induced behaviors show striking similarities to those induced in vertebrate animal models. Although a cocaine-sensitive seroton...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2003